Bayesian Segmentation of Atrium Wall Using Globally-Optimal Graph Cuts on 3D Meshes

نویسندگان

  • Gopalkrishna Veni
  • Zhisong Fu
  • Suyash P. Awate
  • Ross T. Whitaker
چکیده

Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of Dynamic N-D Data Sets via Graph Cuts Using Markov Models

This paper describes a new segmentation technique for multidimensional dynamic data. One example of such data is a perfusion sequence where a number of 3D MRI volumes shows the dynamics of a contrast agent inside the kidney or heart at end-diastole. We assume that the volumes are registered. If not, we register consecutive volumes via mutual information maximization. The sequence of n registere...

متن کامل

DT-MRI Segmentation Using Graph Cuts

An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water dif...

متن کامل

Near Real-Time Motion Segmentation Using Graph Cuts

We present a new approach to integrated motion estimation and segmentation by combining methods from discrete and continuous optimization. The velocity of each of a set of regions is modeled as a Gaussian-distributed random variable and motion models and segmentation are obtained by alternated maximization of a Bayesian a-posteriori probability. We show that for fixed segmentation the model par...

متن کامل

Vertebral body segmentation with prior shape constraints for accurate BMD measurements

We propose a novel vertebral body segmentation approach, which is based on the graph cuts technique with shape constraints. The proposed approach depends on both image appearance and shape information. Shape information is gathered from a set of training shapes. Then we estimate the shape variations using a new distance probabilistic model which approximates the marginal densities of the verteb...

متن کامل

Graph-based variational optimization and applications in computer vision. (Optimisation variationnelle discrète et applications en vision par ordinateur)

Many computer vision applications such as image filtering, segmentation and stereovision can be formulated as optimization problems. Recently discrete, convex, globally optimal methods have received a lot of attention. Many graph-based methods suffer from metrication artifacts. Segmented contours are blocky in areas where contour information is lacking. In Chapter 2, we develop a discrete yet i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information processing in medical imaging : proceedings of the ... conference

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013